- 8. CLASSIFYING SUBSTANCES AS ACIDIC BASIC OR NEUTRAL.
- the hydrolysis of salts of weak acids and weak bases can be represented using equations; the Brønsted-Lowry model can be applied to explain the acidic, basic and neutral nature of salts derived from bases and monoprotic and polyprotic acids

8a. lons you should know.

Below is a table of common ions classified as either acidic basic or neutral.

	Neutral	Basic	Acidic
Anions	derived from strong acids	derived from weak acids	derived from polyprotic acids*
	CI-, NO ₃ , Br-, I-	F ⁻ , S ²⁻ , SO ²⁻ , CIO ⁻ , CH ₃ COO ⁻ , CO ²⁻ , HCO ⁻ ₃ , PO ³⁻ ₄ , HPO ²⁻ ₄	HSO ₄ , H ₂ PO ₄
Cations	derived from strong bases		
	Li+, Mg ²⁺ , Na+, Ca ²⁺ , K+, Ba ²⁺	none	NH ₄ , Al ³⁺ , Fe ³⁺

^{*}Some anions derived from polyprotic acids (e.g. HCO_3^- and HPO_4^{2-}) are basic.

Worked example 1 - Is ammonium chloride an acidic, basic, or neutral salt?

• Step 1 – The salt dissociates into it's constituent ions

$$NH_4CI \rightarrow NH_4^+_{(aq)} + CI^{1-}_{(aq)}$$

- Step 2 Consider the hydrolysis reaction of each of the ions
 - Cl¹-does not undergo hydrolysis
 - NH₄⁺ undergoes the following hydrolysis reaction

$$NH_4^+ + H_2O \leftrightarrow NH_3 + H_3O^+$$

Therefore...the salt is acidic (when dissolved in water)

Worked example 2 – Is potassium ethanoate an acidic, basic, or neutral salt?

• Step 1 – The salt dissociates into it's constituent ions

$$KCH_3COO \rightarrow K^+_{(aq)} + CH_3COO^{1-}_{(aq)}$$

- Step 2 Consider the hydrolysis reaction of each of the ions
 - K⁺ does not undergo hydrolysis
 - CH₃COO¹- undergoes the following hydrolysis reaction

$$CH_3COO^{1-} + H_2O \leftrightarrow CH_3COOH + OH^{1-}$$

Therefore...the salt is basic. (when dissolved in water)

8b. Justifying pH of ions when told if it's acidic basic or neutral.

Worked example 1 - NH_4F is a neutral salt, use chemical equations to explain this observation.

- Step 1 The salt dissociates into it's constituent ions $NH_4 \mathbf{F} \rightarrow NH_{4^+(aq)} + \mathbf{F}^{--}_{(aq)}$
- Step 2 Consider the hydrolysis reaction of each of the ions
 - F^{1-} undergoes the following hydrolysis reaction $F^{1-} + H_2O \leftrightarrow HF + OH^{1-}$
 - NH₄⁺ undergoes the following hydrolysis reaction NH₄⁺ + H₂O \leftrightarrow NH₃ + H₃O⁺

Therefore...

Both hydrolysis reactions must occur to similar extents resulting in equal quantities of H_3O^+ and OH^{1-} being produced...thus the resulting solution is neutral.

Worked example $2-NaH_2PO_4$ is an acidic salt, use chemical equations to explain this observation

- Step 1 The salt dissociates into it's constituent ions $NaH_{2}PO_{4} \rightarrow Na^{+}{}_{(aq)} + H_{2}PO_{4}^{1-}{}_{(aq)}$
- Step 2 Consider the hydrolysis reaction of each of the ions
 - Na+does not undergo a hydrolysis reaction
 - H₂PO₄¹⁻ can act as both a proton donor and a proton receiver.

(1)
$$H_2PO_4^{1-} + H_2O \iff HPO_4^{2-} + H_3O^+$$

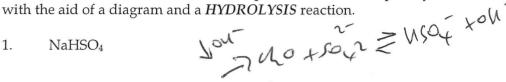
(2)
$$H_2PO_4^{1-} + H_2O \leftrightarrow H_3PO_4 + OH^{1-}$$

Therefore...

Since the salt is said to be acidic we assume that the 1^{st} hydrolysis reaction occurs to a great extent (i.e. larger K value) than the 2^{nd} . In other words $H_2PO_4^{1-}$ has a greater tendency to act a proton donor than to act as a proton receiver. Therefore the $[H_3O^+]$ will be greater than the $[OH^{1-}]$

Exercise:

By examining the nature of the ions decide whether the following ionic salts would be acidic, basic or neutral in aqueous solution. Explain your answers with the aid of a diagram and a *HYDROLYSIS* reaction.


- 1. NaHSO₄
- 2. KCl
- 3. NaCH₃COO
- 4. NH_4C1
- 5. Na_2SO_4
- 6. NH, CH, COO (hard)

CHEMISTRY

Page 39 Lucrelli

Exercise:

By examining the nature of the ions decide whether the following ionic salts would be acidic, basic or neutral in aqueous solution. Explain your answers with the aid of a diagram and a *HYDROLYSIS* reaction.

Slighty autic USOx ->TU+ +50x2-

2. KCl

rental k(1 -> k++cl come from strong base / aid e.g. koul hc/

3. NaCH₃COO

Slighty bonic. Cycoo + 4+ > Cycool

4. NH₄Cl

Stylyadia NH4+ NH2+H+

5. Na2SO4

SOX-+WO = WOX +OM

bane Na250x = 50x from strong

6. NH CH COO (hard)

NM2 CU2 COO = NH3 CU2 COO = NH3 CU2 COOM

HAD (bentler) Zuntterion.

7, fells

Fe # + 110 = Fe (0 \vec{u})_3 + 3 u+

8, kicoz

(0,2 + Mo = 40,5 + al-

Donal Co

The state of the s

Note: Tell to the factor of th

THOMES AND THE PROPERTY OF THE

1. Explain why the salt of a strong acid and a strong base yields a neutral solution.

Both strong aciels and strong bases produce ions in a complete,

2. Explain why the salt of a strong acid and a weak base yields an acidic solution.

4	Colour of universal indicator	рН	Acidic/ basic/ neutral	Equation to explain if solution is acidic or basic
Sodium chloride(aq)	tireen	49	Nintral	ž.
Potassium chloride(aq)	erreen	7	Neutral	
Ammonium chloride(aq)	Yellow	6	Acarlia	NHHHAN + H2Ogy 22 NH31ag + H3Ogag
Calcium chloride(aq)	arten	wy	Neutral	2
Iron (III) chloride(aq)	Red	g data	Atielie	Feings + HEO(11 == Fe (OH2)(11 + 3H*ings
Sodium carbonate(aq)	Purple	edianes e	Bane	107 - 2 H2 Off = H2 Cosing + 2 OH ings
Sodium ethanoate(aq)	pale green	8	Russe	CH3 coolings + H2O(11 77 CH3COCH (mg) + OH
Sodium hydrogencarbonate(aq)	Dark green	OF	Baric	Heozena + Heore En Hecornal + OHenas
Sodium sulfate (aq)	livetin	7	Neutral	
Sodium hydrogen sulfate (aq)	Red	1984 1	Acretic	HSCHLAP H2011 For FOURAGE + H36 tags
Sodium sulfite(aq)	Dark green	. 9	Sasic	502tage + H2011 2 H503tags + OFTings
Sodium sulfide(aq)	Purple.	steppe utter	Pasic	52 (ag + 2H20 (11 22) H25 (ag + 20H ings
Iron(II) sulfate(aq)	Real	Action	Acidie	Fe 3ty + 3th2011 == Fe (0+13) (5) + 3+1 " 1991
Sodium oxalate(aq)	Pale green	8	Passe	6204 cage + 2H20611 23 H26204cage + 20H1ags
Ammonium sulfate(aq)	Yellow .	6	Acidic	MH4129 + 420 111 = MH71091 + H302091
Aluminium sulfate(aq)	Red	١	Acedia	A13+ + 3420 11 22 A1(0K1765) + 54 (uq)
Aluminium chloride(aq)	re ed	Alban	Acielie	Altenge + 8420 (11 22 AllOH) stor + 34 tings

The second of th